viernes, 22 de febrero de 2008

FLUIDOS REALES

LEY DE STOKES


La ley de Stokes se refiere a la fuerza de fricción experimentada por objetos esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de bajos números de Reynolds. Fue derivada en 1851 por George Gabriel Stokes tras resolver un caso particular de las ecuaciones de Navier-Stokes. En general la ley de Stokes es válida en el movimiento de partículas esféricas pequeñas moviéndose a velocidades bajas.


La ley de Stokes puede escribirse como:


Fr=6πRην,

donde R es el radio de la esfera, ν su velocidad y η la viscosidad del fluido.


La condición de bajos números de Reynolds implica un flujo laminar lo cual puede traducirse por una velocidad relativa entre la esfera y el medio inferior a un cierto valor crítico. En estas condiciones la resistencia que ofrece el medio es debida casi exclusivamente a las fuerzas de rozamiento que se oponen al deslizamiento de unas capas de fluido sobre otras a partir de la capa límite adherida al cuerpo. La ley de Stokes se ha comprobado experimentalmente en multitud de fluidos y condiciones.


Si las partículas están cayendo verticalmente en un fluido viscoso debido a su propio peso puede calcularse su velocidad de caída o sedimentación igualando la fuerza de fricción con la fuerza de gravedad.



donde:

Vs es la velocidad de caída de las partículas (
velocidad límite)
g es la
aceleración de la gravedad,
ρp es la
densidad de las partículas y
ρf es la
densidad del fluido.


NUMERO DE REINOLDS


El número de Reynolds es un número adimensional utilizado en mecánica de fluidos, diseño de reactores y fenómenos de transporte para caracterizar el movimiento de un fluido.

Como todo número adimensional es un cociente, una comparación. En este caso es la relación entre los términos convectivos y los términos viscosos de las ecuaciones de Navier-Stokes que gobiernan el movimiento de los fluidos.

Por ejemplo un flujo con un número de Reynolds alrededor de 100.000 (típico en el movimiento de una aeronave pequeña, salvo en zonas próximas a la capa límite) expresa que las fuerzas viscosas son 100.000 veces menores que las fuerzas convectivas, y por lo tanto aquellas pueden ser ignoradas. Un ejemplo del caso contrario sería un cojinete axial lubricado con un fluido y sometido a una cierta carga. En este caso el número de Reynolds es mucho menor que 1 indicando que ahora las fuerzas dominantes son las viscosas y por lo tanto las convectivas pueden despreciarse. Otro ejemplo: En el análisis del movimiento de fluidos en el interior de conductos proporciona una indicación de la pérdida de carga causada por efectos viscosos.

Además el número de Reynolds permite predecir el carácter turbulento o laminar en ciertos casos. Así por ejemplo en conductos si el número de Reynolds es menor de 2000 el flujo será laminar y si es mayor de 4000 el flujo será turbulento, si se encuentra en medio se conoce como flujo transicional y su comportamiento no puede ser modelado. El mecanismo y muchas de las razones por las cuales un flujo es laminar o turbulento es todavía hoy objeto de especulación.
Este número recibe su nombre en honor de
Osborne Reynolds (1842-1912), quien lo describió en 1883. Viene dado por siguiente fórmula:





donde
ρ: densidad del fluido
vs: velocidad característica del fluido
D: Diámetro de la tubería a través de la cual circula el fluido
μ: viscosidad del fluido
ν: viscosidad cinemática del fluido


FLUJO LAMINAR

Se llama flujo laminar o corriente laminar, al tipo de movimiento de un fluido cuando éste es perfectamente ordenado, estratificado, de manera que el fluido se mueve en láminas paralelas sin entremezclarse si la corriente tiene lugar entre dos planos paralelos, o en capas cilíndricas coaxiales como, por ejemplo la glicerina en un tubo de sección circular. Las capas no se mezclan entre sí. El mecanismo de transporte es exclusivamente molecular.

La pérdida de energía es proporcional a la velocidad media. El perfil de velocidades tiene forma de una parábola, donde la velocidad máxima se encuentra en el eje del tubo y la velocidad es igual a cero en la pared del tubo.

Se da en fluidos con velocidades bajas o viscosidades altas, cuando se cumple que el número de Reynolds es inferior a 2100.

Se caracteriza porque el movimiento de las partículas del fluido se produce siguiendo trayectorias bastante regulares, separadas y perfectamente definidas dando la impresión de que se tratara de laminas o capas más o menos paralelas entre si, las cuales se deslizan suavemente unas sobre otras, sin que exista mezcla macroscópica o intercambio transversal entre ellas. La ley de Newton de la viscosidad es la que rige el flujo laminar:


Esta ley establece la relación existente entre el esfuerzo cortante y la rapidez de deformación angular. La acción de la viscosidad puede amortiguar cualquier tendencia turbulenta que pueda ocurrir en el flujo laminar. En situaciones que involucren combinaciones de baja viscosidad, alta velocidad o grandes caudales, el flujo laminar no es estable, lo que hace que se transforme en flujo turbulento.



Flujo laminar de un fluido perfecto en torno al perfil de un objeto.


Distribución de velocidades en un tubo con flujo laminar.


FLUJO TURBULENTO

Se llama flujo turbulento o corriente turbulenta al movimiento de un
fluido que se da en forma caótica, en que las partículas se mueven desordenadamente y las trayectorias de las partículas se encuentran formando pequeños remolinos aperiódicos, como por ejemplo el agua en un canal de gran pendiente. Debido a esto, la trayectoria de una partícula se puede predecir hasta una cierta escala, a partir de la cual la trayectoria de la misma es impredecible, más precisamente caótica.
Las primeras explicaciones científicas de la formación del flujo de turbulento proceden de
Andrey Kolmogorov y Lev D. Landau (teoría de Hopf-Landau). Aunque la teoría modernamente aceptada de la turbulencia fue propuesta en 1974 por David Ruelle y Floris Takens.


Distribución de velocidades al interior de un tubo con flujo turbulento


ECUACION DE COLEBROOK-WHITE

Fórmula usada en hidráulica para el cálculo del factor de fricción de Darcy λ también conocido como coeficiente de rozamiento. Se trata del mismo factor λ que aparece en la ecuación de Darcy-Weisbach.

La expresión de la fórmula de Colebrook-White es la siguiente:




Donde Re es el número de Reynolds, k / D la rugosidad relativa y λ el factor de fricción.

El campo de aplicación de esta fórmula se encuentra en la zona de transición de flujo laminar a flujo turbulento y flujo turbulento. Para la obtención de λ es necesario el uso de métodos iterativos. Otra forma más sencilla y directa de obtener el valor de λ es hacer uso del diagrama de Moody.


Para el caso particular de tuberías lisas la rugosidad relativa, es decir la relación entre la rugosidad en las paredes de la tubería y el diámetro de la misma, es muy pequeño con lo que el término k / D es muy pequeño y puede despreciarse el primer sumando situado dentro del paréntesis de la ecuación anterior. Quedando en este caso particular la ecuación del siguiente modo:





Para números de Reynolds muy grandes el segundo sumando situado dentro del paréntesis de la ecuación de Colebrook-White es despreciable. En este caso la viscosidad no influye en la práctica a la hora de determinar el coeficiente de fricción, este únicamente depende de la rugosidad relativa k / D de la tubería. Esto se manifiesta en el diagrama de Moody en que en la curva para valores elevados de Re se hacen rectas.

viernes, 15 de febrero de 2008

Puntos a tratar para exposicion._FLUIDOS REALES

Fluidos reales: concepto y ecuaciones por las que se rigen. Ecuación del movimiento de los fluidos reales.- .- Ecuaciones de Navier-Stokes.- Generalización de la Ecuación de Bernoulli a los fluidos reales

lunes, 28 de enero de 2008

FLOTABILIDAD

Un cuerpo que se encuentre en un fluido, ya sea flotando o sumergido, es empujado hacia arriba por una fuerza igual al peso del fluido desplazado. La fuerza boyante ( o flotante ) actúa verticalmente hacia arriba a través del centroide del volumen desplazado y se le puede definir de manera matemática mediante el principio de Arquimides, según lo presentamos a
continuación: Fb = f x Vd

Fb = f x Vd
Fb = Fuerza boyante.
f = Peso especifico del fluido.
Vd = Volumen desplazado del fluido.

Cuando un cuerpo flota libremente, desplaza un volumen suficiente de fluido para equilibrar justo su propio peso. El análisis de problemas que tratan sobre flotabilidad requiere la aplicación de la ecuación de equilibrio estático en la dirección vertical
Fv = 0.

ESTABILIDAD DE LOS CUERPOS EN UN FLUIDO.- Un cuerpo en un fluido es considerado estable si regresa a su posición original después de habérsele girado un poco alrededor de un eje horizontal. Las condiciones para la estabilidad son diferentes, dependiendo de que si el cuerpo esta completamente sumergido o se encuentra flotando.

ESTABILIDAD DE CUERPOS FLOTANTES: el cuerpo flotante esta en su orientación de equilibrio y el centro de gravedad (cg) se encuentra por encima del centro de flotabilidad (cb). a la recta vertical que pasa por estos dos puntos se le conoce como eje vertical del cuerpo. Se muestra que si se gira el cuerpo ligeramente con respecto a un eje horizontal, el centro de flotabilidad se desplaza a una nueva posición debida a que la geometría del volumen desplazado se ha modificado. La fuerza boyante y el peso ahora producen un par de rectificación que tiende a regresar al cuerpo a su orientación original. Así pues el cuerpo es estable.
Con el fin de establecer la condición de estabilidad de un cuerpo flotante definir un nuevo término.

El metacentro (mc) se define como el punto de intersección del eje vertical de un cuerpo cuando se encuentra en su posición de equilibrio y la recta vertical que pasa por la nueva posición del centro de flotabilidad cuando el cuerpo es girado ligeramente.
Un cuerpo flotante es estable si su centro de gravedad esta por debajo del metacentro.
Es posible determinar analíticamente si un cuerpo flotante es estable, mediante el calculo de la posición del metacentro. La distancia del metacentro al centro de flotabilidad se denota con MB y se calcula a partir de la ecuación:

MB = I / Vd

En esta ecuación Vd es el volumen desplazado de fluido ³ I es el mínimo momento de inercia de una sección horizontal del cuerpo, tomada en la superficie del fluido.

Si la distancia MB coloca al metacentro por encima del centro de gravedad el cuerpo es estable.


Significado, historia y origen de la palabra. Qué significa Flotabilidad Principio de Arquímedes.

"Todo cuerpo sumergido en un fluido experimenta un empuje vertical de abajo hacia arriba igual al peso del volumen del líquido desalojado". Para que un buque flote, la condición es que su peso especifico sea menor que el del líquido desalojado por aquel.

Es por ello que la flotabilidad es la propiedad que tienen los buques para mantenerse a flote y que, sumergido hasta la línea de máxima carga, quede volumen suficiente fuera del agua para que pueda navegar con mal tiempo, en previsión de aumento de peso por embarque de agua.


PRESION DE VAPOR.

Los fluidos en fase liquida o gaseosa dependiendo de las condiciones en que se encuentren. Las sustancias puras pueden pasar por las cuatro fases, desde sólido a plasma, según las condiciones de presión y temperatura a que estén sometidas. Se acostumbra designar líquidos a aquellos materias que bajo las condicione normales de presión y temperatura en que se encuentran en la naturaleza están en esa fase.
Cuando un liquido se le disminuye la presión a la que esta sometido hasta llegar a un nivel en el que comienza a bullir, se dice que alcanzado la presión de vapor. Esta presión depende de la temperatura. Así por ejemplo, para el agua a 100°C, la presión es de aproximadamente de 1 bar, que equivale a una atmósfera normal.

CAVITACION

La presión y la velocidad en un fluido está íntimamente vinculadas. Si aumentamos la velocidad la presión decrece. Disminuyendo la presión sabemos que un líquido puede pasar al estado gaseoso.
• Si la presión disminuye
fuertemente en algunos puntos
del seno de un escurrimiento
líquido puede dar lugar a un
cambio de fase fenómeno que
llamaremos cavitación.
• Para que se produzca el
cambio de fase la presión
debe ser tan pequeña como
para que se puedan vencer las
barreras de energía dadas por
la tensión superficial
• Las paredes o las pequeñas partículas actúan
como precursores de la formación de las
burbujas las cuales son arrastradas aguas abajo
• Estas burbujas pueden agruparse en bolsones o
volver a colapsar , al aumentar la presión nuevamente
• Este colapso trae como consecuencia la
aparición de ondas de presión y emisión de
sónido.
• La disociación de las moléculas de aguas que
se producen pueden cambiar el ph local y
promover la corrosión